
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

(Volume 13, Issue 01)

Publishing Month: June 2015

An Indexed and Referred Journal

ISSN: 2347-601X

www.ijemhs.com

IJEMHS

www.ijemhs.com

33

Review Paper for Variability in Software Reuse

Concepts

Anchal Kathuria1 and Trilok Gaba2

1M.Tech. Scholar, BITS, Bhiwani, Haryana (India)

anchal9306@gmail.com

2Assistant Professor, BITS, Bhiwani, Haryana (India)

trilok_gaba@yahoo.co.in

Abstract

While tradition method fail to account for growth

opportunities flexibility generated by investment in reuse,

the introduction of option pricing theory can enhance the

design and evaluation of software reuse project. Similarly,

discipline of business strategy hold promise to help to fill

the void of “strategic context” within which reuse

investment happens. Particularly important among those

risks are failures to effectively address quality attribute

requirements such as performance, availability, security,

and modifiability. The proposed research work provides an

overview of architecture approaches and their effect on

quality attributes, establishes an organized collection of

design-related questions that an architecture evaluator may

use to analyze the ability of the architecture to meet quality

requirements, and provides a brief sample evaluation.

Keywords: Arbitrage, Camp, Competitive position,

CCA, Decision tree analysis, Hedge Ratio, RADR.

1. Introduction

The seminar paper on software reuse was an invited

paper at the conference: Mass Produced Software

Components by Mclhoy [1968]. McIhoy proposed a

library of reusable components and automated

techniques for customizing components to different

degrees of precision and robustness. McIlroy felt that

component libraries could be effectively used for

numerical computation, 1/0 conversion, text

processing, and dynamic storage allocation. Twenty-

three years later, many computer scientists still see

software reuse as potentially a powerful means of

improving the practice of software engineering

[Boehm 1987; Brooks 1987; Standish 1984].

Software reuse has failed to become standard practice

for software construction. In light of this failure, the

computer science community has renewed its interest

in understanding how and where reuse can be

effective and why it has proven so difficult to bring

the seemingly simple idea of software reuse to the

forefront of software development technologies

[Bigger staff and Perlis 1989a, 1989b; Freeman

1987b; Tracz 1988]. Simply stated, software reuse is

using existing software artefacts during the

construction of a new software system. The types of

artefacts that can be reused are not limited to source

code fragments but rather may include design

structures, module-level implementation structures,

specifications, documentation, transformations, and

so on [Freeman 1983]. There is great diversity in the

software engineering technologies that involve some

form of software reuse. The 1968 NATO software

Engineering Conference is generally considered as

the birthplace of the software engineering field [Naur

and Randell 1968]. The conference focused on the

software crisis the problem of building large, reliable

software systems in a controlled, cost-effective way.

2. Scope of Software Reuse

The most common type of reuse is the reuse of

software components, but other artefacts produced

during the software development process can also be

reused: system architectures, analysis models, design

models, design patterns, database schemas, web

services, etc. Software reuse may occur across similar

systems (e.g., within the Earth science community) or

across widely different systems (e.g., we may be able

to reuse a component from outside the Earth science

community). Software reuse is generally defined as

the use of previously developed software resources

from all phases of the software life cycle, in new

applications by various users such as programmers

and systems analysts [W. Tracz, 1987, Krueger,

1992]. A reusable resource can be any information in

physical or electronic form which a developer may

need in the process of creating software [Freeman,

1983]. Reusability is a measure of the ease with

which the resource can be reused in a new situation.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

(Volume 13, Issue 01)

Publishing Month: June 2015

An Indexed and Referred Journal

ISSN: 2347-601X

www.ijemhs.com

IJEMHS

www.ijemhs.com

34

Some classes of resource are naturally more reusable

than others. Reuse occurs when a developer

(consumer or client) uses a resource developed by

another software developer (producer or donor.) The

distinction between consumption and production of

reusable resources is also captured by the terms

"development with reuse" and "development for

reuse." Software reuse may be ad hoc or opportunistic

in the sense that developers discover reusable

components in existing applications by a process

commonly termed "code scavenging." On the other

hand, planned reuse occurs when an organization

develops explicit reuse processes and standards and,

in particular, invests in the up-front development of

reusable resources. In practice, most reuse has

involved the reuse of code by developers working on

a common project [Lim Wayne C, 1994]. However,

this is limiting. A more ambitious program of reuse

presents greater challenges but can have major

benefits. To provide an organized and inclusive point-

of-view, the concept of widespread software reuse

with respect to the following dimensions: classes of

user, reusable resource types and software

development tasks as been defined. Significant

benefits can only be obtained from reuse of software

resources by others, and, for organizations such as the

Department of Defense that employ many software

contractors [Apte, 1990]. The next set of issues

concerns what can be feasibly and economically

reused. Software resources can be classified

according to entity type, level of abstraction (or stage

in the development life cycle in which they are

produced) and application type. By "entities" means

that the fundamental things that comprise software

resources. The commonest reusable software entity

types are processes, data and objects.

Test cases (consisting of data and procedures) and

documentation (plans, estimates, user manuals and so

on) are other major classes of software resource that

can be reused in many situations with obvious cost

savings. To a large extent, a mixture of

organizational discipline and the use of some

relatively mature technologies such as data

dictionaries, database management systems, and

version control software can gain data, test case and

documentation reuse. Because they present a more

challenging and difficult problem, process resources

have been the major targets of reuse research.

Software development can be viewed as a process in

which abstract software resources are continually

changed into more concrete forms. For example, a

process resource is near one end of spectrum, the

abstract level, if it is represented by functional

requirements in narrative form.

3. Problems in Path of Software Reuse

 A successful implementation of the software reuse

requires programmer’s motivation to reuse, a group

other than the project team in the company to think

about steps carefully and thoroughly before starting a

software project and requires good communication

and management in the project teams. Meaningful,

well-documented and tested components are needed

to be developed before the component is reused.

Many factors that inhibit the success of software reuse

can be classified into five categories: human factors,

technique issues, organizational factors, political

issues and economic factors.

(i) Human Factors

Software designers are hesitating to reuse the

software component because they feel that it takes

less time to build a component from the scratch than

to locate, to understand and to modify someone else

code especially when the components are not well-

documented or there is no such tools to help find the

needed components. Lack of sufficient software reuse

training or experiences also contributes programmers

reluctance to adopt reuse strategy because mostly has

no idea how to do it.

Managers usually don’t choose to adopt software

reuse strategy because they feel that software reuse

may lead to unnecessary legal problem if there is a

defect in the reused components. The other reason

may be because it takes longer time and more cost to

do a thorough domain study and analysis which is

critical to the success of software reuse than to just

simply build some usable component, especially

under the situation that the software product needs to

be delivered in a tight schedule. Software reuse

reduces the need of the software developer and

programmer, which will be seen as a threat to their

authority and position by some mangers. Without the

availability of management person that can provides

good software reuse plan and can commit efficient

coordination from high level management hierarchy

to lower ones in the company, companies find that the

chance of success of software reuse is very low. As a

result of failure, some companies dare not try to

implement the software reuse strategy in the future

[W. Tracz, 1987].

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

(Volume 13, Issue 01)

Publishing Month: June 2015

An Indexed and Referred Journal

ISSN: 2347-601X

www.ijemhs.com

IJEMHS

www.ijemhs.com

35

(ii) Technology Factors

Failure rate is high when components are reused in a

different domain and different hardware platform

from the ones in which the original software

component was designed. Sometimes tools that

support software reuse are not widely available and

not all languages support software reuse technology.

If a bug appears in the reused component, sometimes

it is much harder t o detect the bug or determine the

cause. These technical issues put challenges to the

software reuse and inhibit the potential of the

software reuse.

(iii) Organization Factors

Size of the organization usually is not an important

factor affecting the software reuse. Good

communication among group members and between

the higher-level hierarchy and the lower level

hierarchy in management determines the success of

software reuse. An organization does not have good

software reuse experience and does not have a good

management of a long term reuse strategy will have

difficulty in its reuse effort. Some organizations have

the misconception that the object oriented

programming is equal to the software reuses. As a

result of this misconception, the reuse process usually

is not well introduced and non-reuse process is not

modified, which leads to the failure of the effort to

reuse software.

4. Standard versus Risk-Neutral Present

Value Calculation

Before bringing options into the scenario, let us use

the standard techniques of Discounted Cash Flow to

calculate the Present Value of development projects in

the Italian market.

Here we have discounted at the required rate of return

k = 20%. Now let us see how we can arrive at the

same result using the risk-neutral valuation techniques

of Contingent Claims Analysis and the risk-free

discount rate. We first calculate the (risk-neutral)

probability associated with the upside return on the

twin security:

Thus the risk-neutral downside probability 1- p is

simply 60%.

5. Present Value Concepts

Many approaches to analyzing the economic value of

investments in software reuse have been proposed in

the literature. Lim [1996] has made an exceptionally

thorough survey. Favaro[1996a] has compared several

approaches to valuation cited in the literature on

software reuse economics, including time to payback,

“amortization,” and profitability index, concluding

that Net Present Value (NPV) is superior to other, ad

hoc approaches. Following standard texts on financial

theory in this section [Brealey and Myers 1996;

Trigeorgis 1996], we introduce and motivate concepts

of value, risk, and decision modeling, together with

illustrative scenarios. The concept of present value is

an essential tool for giving proper weight to all present

and future costs and benefits resulting from an

investment. Based upon the simple notion that a dollar

today is worth more than a dollar tomorrow (known as

the “time value of money”), the Discounted Cash Flow

(DCF) formula “weights” the relative contributions of

cash flows that are more or less distant in the future

with the application of a discount rate r according

to the period (e.g. the year) in which the cash flows C

occur.

The contribution of each cash flow C to the Present

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

(Volume 13, Issue 01)

Publishing Month: June 2015

An Indexed and Referred Journal

ISSN: 2347-601X

www.ijemhs.com

IJEMHS

www.ijemhs.com

36

Value (PV) of the investment is I weighted by the

compounded discount rate (1+ r). I Since the cash

flows are generally preceded by an initial investment

C , the Net Present 0 Value (NPV) adds this (usually

negative) cash flow NPV = C + PV0 to capture in a

single number the totality of all contributions to the

value of the investment. The investment decision then

reduces to a single rule: make the investment if its

NPV is positive. One way of looking at the discount

rate r is to consider it the penalty for delay of a cash

flow (like interest on a loan). Another important point

of view is that of the investor, who always has

alternative investments available, such as Treasury

Bills (which carry no risk) or common stocks (which

carry varying amounts of risk). This point of view

forms a link between financial and real-world

investments. The investor considers a prospective

investment in a real-world project to be in

“competition” with the others available to him,

including those on financial markets. If one thinks of a

real-world project (e.g. development of an object-

oriented framework) as having a “twin security” (a

financial security or portfolio of securities) with the

same risk characteristics then the expected rate of

return r from that security becomes the “cost of

capital” for the real-world project, since the real-world

project must offer a higher expected return to attract

the investor’s capital—and thus, it is also the discount

rate used in the DCF evaluation of the real-world

project. From this point of view, DCF evaluation of a

real-world project is effectively a way of analyzing

what the shares of a company that carried out only that

project would be worth if they were traded on the

financial markets. (There are indeed many software

companies whose sole business consists of a single

kind of project—such as object-oriented frameworks.)

As an illustration of the DCF technique, consider a

scenario in which a software company has been

offered a contract to create a set of CD-ROM titles for

a large game-producing corporation. The corporation

has guaranteed the purchase of a certain number of

titles produced over a three year production schedule.

In a first one-year phase, the company implements a

software repository of multimedia components for an

investment of one hundred thousand dollars.

In a second one-year phase, it staffs the department

and launches production at a cost of three million

dollars. The corporation buys all of the production of

the third one-year phase at a price specified in the

contract of 3.5 million dollars. This contract carries no

risk for the company, since its income is certain. For

now, we note that this implies that it can be discounted

at a risk-free rate, for example 5%. (Later we will f

expand on the topic of risk.) Using standard DCF then,

the net present value (in millions of dollars) of this

contract is C

6. Summary

This Thesis has presented three techniques for the

valuation of investments—Net Present Value,

Decision Tree Analysis, and Contingent Claims

Analysis—and discussed their relationship to each

other and the role that each can play in software reuse

economics. The newer and less widely known field of

Contingent Claims Analysis is recommended in

particular as providing a useful perspective on

strategic investments in reuse infrastructure capability.

Caution was recommended in the application of the

theory—originally developed in the context of

financial assets—in the context of investments in real

assets. Often when a powerful new hammer emerges,

its enthusiasts tend to see every problem as a nail. In

the first wave of popularity of object-oriented

development, the “everything is an object” syndrome

was well documented. We have seen that real options

of many kinds are embedded in strategic projects. It is

important to recognize and evaluate these options

correctly, keeping in mind the theoretical and practical

complications that have been discussed in this paper.

Judgment and experience are required to avoid sliding

down the slippery slope into an “everything is an

option” syndrome.

7. Conclusion

As the saying goes, "no pain, no gain," and the reuse

of software is no exception. The product line

approach to software reuse requires substantial

upfront investment with substantial, but not

immediate, benefits. Much commitment, planning,

and effort are required to begin a reuse program.

Reuse processes and procedures must be incorporated

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

(Volume 13, Issue 01)

Publishing Month: June 2015

An Indexed and Referred Journal

ISSN: 2347-601X

www.ijemhs.com

IJEMHS

www.ijemhs.com

37

into the existing software development process.

Repositories of software assets must be created and

maintained. Reusable assets must be designed for

reusability. People must be trained in the skills of

software reuse. Despite the initial overhead, there are

high benefits to software reuse, if appropriate

processes are invoked and the requisite planning

takes place. Product quality and reliability can

increase. Project development time can decrease,

along with associated project costs. Project

scheduling can become another standard calculation

instead of a guesstimate.

References

[1] Andrews, W. (1997), “IBM Creates Line of

Components for Building Applications,” Web

Week, July 28.

[2] Baldwin, C. (1987), “Competing for capital in a

global environment,” Midland Corporate Finance

Journal, 1, 43-64.

[3] Buffett, W. (1997), Berkshire Hathaway 1996

Annual Report.

[4] Black, F., and M. Scholes (1973), “The Pricing of

Options and Corporate Liabilities,” Journal of

Political Economy 81, May/June, 637-659.

[5] Boehm, B. (1984), “Software engineering

economics,” IEEE Transactions on Software

Engineering 10, 1.

[6] Chriss, N. (1997), Black-Scholes and Beyond:

Option Pricing Models, Irwin Press, Burr Ridge,

IL.

[7] Clemons, E.K. (1991), “Evaluation of Strategic

Investments in Information Technology,”

Communications of the ACM 34, 1, 22-36.

[8] Dixit, A.K. (1980), “The role of investment in

entry deterrence,” Economic Journal 90, March,

pp. 95-106.

[9] Dixit, A.K., and R.S. Pindyck (1994), Investment

under Uncertainty, Princeton University Press,

Princeton, NJ.

[10] Favaro, J. (1996a), “A comparison of approaches

to reuse investment analysis,” In Proceedings of

the Fourth International Conference on Software

Reuse, IEEE.

[11] IBM (1997), “San Francisco Project Technical

Summary,” IBM Corporation.

[12] Index Data (1998), YAZ development

environment, http://www.indexdata.dk.

[13] Jacobson, I. M. Griss and P. Jonsson (1997),

Software Reuse: Architecture, Process and

Organization for Business Success, Addison-

Wesley Longman, Reading, MA.

[14] Karlsson, E.A., Ed. (1995), Software Reuse: A

Holistic Approach, Chichester: Wiley.

[15] Ku, B.S., “A Reuse-Driven Approach for Rapid

Telephone Service Creation,” In Proceedings of

the Third International Conference on Software

Reuse, IEEE Computer Society Press, Los

Alamitos, CA, pp. 64-72.

[16] Kulatilaka, N. (1988), “Valuing the flexibility of

flexible manufacturing systems,” IEEE

Transactions in Engineering Management 35,

4,250-257.

[17] Malan, R., and K. Wentzel (1993), “Economics

of Software Reuse Revisited,” Proceedings of the

Third Irvine Software Symposium, Department

of Computer Science, University of California at

Irvine, Irvine, CA.

[18] In Recent Advances in Corporate Finance, eds.

Altman and Subrahmanyan, Irwin Press, Burr

Ridge, IL.

[19] McDonald, R. and D. Siegel (1985), “Investment

and the Valuation of Firms When There is an

Option to Shut Down,” International Economic

Review 26, June, 331-349.

[20] Moad, J. (1995), “Time for a fresh approach to

ROI,” Datamation, 15 February.

[21] Myers, S.C. and S. Majd (1990), “Abandonment

value and project life, ”Advances in Futures and

Options Research 4,1-21.

